868 research outputs found

    An evaluation of the partial reflection technique and results from the winter 1971 - 1972 D region

    Get PDF
    Fundamental physical and chemical processes, and measurement techniques on the D region are reviewed. Design considerations about a partial-reflection system are made, and the main characteristics of the partial-reflection system at the University of Illinois are presented. The nature of the partial reflections is discussed, particularly reflections produced by gradients in electron density and by random fluctuations in a locally homogeneous random medium. Possible reasons for disagreement between partial reflections and rocket measurements are discussed. Some suggestions are made to improve partial-reflection data reduction, including the use of only maximums of the reflections and deconvolution of the data. The results of partial-reflection measurements at Wallops Island, Virginia during the 1971-1972 winter are presented and compared to rocket measurements

    Formation energy and interaction of point defects in two-dimensional colloidal crystals

    Full text link
    The manipulation of individual colloidal particles using optical tweezers has allowed vacancies to be created in two-dimensional (2d) colloidal crystals, with unprecedented possibility of real-time monitoring the dynamics of such defects (Nature {\bf 413}, 147 (2001)). In this Letter, we employ molecular dynamics (MD) simulations to calculate the formation energy of single defects and the binding energy between pairs of defects in a 2d colloidal crystal. In the light of our results, experimental observations of vacancies could be explained and then compared to simulation results for the interstitial defects. We see a remarkable similarity between our results for a 2d colloidal crystal and the 2d Wigner crystal (Phys. Rev. Lett. {\bf 86}, 492 (2001)). The results show that the formation energy to create a single interstitial is 1212% - 28% lower than that of the vacancy. Because the pair binding energies of the defects are strongly attractive for short distances, the ground state should correspond to bound pairs with the interstitial bound pairs being the most probable.Comment: 5 pages, 2 figure

    Substitutability of Spectrum and Cloud-Based Antennas in Virtualized Wireless Networks

    Get PDF
    Some of the new trends emerging in future wireless networks enable a vastly increased fluidity in accessing a wide range of resources, thus supporting flexible network composition and dynamic allocation of resources to VNOs. In this work we study a new resource allocation opportunity that is enabled by the cloud radio access network architecture. In particular, we investigate the relationship between cloud-based antennas and spectrum as two important resources in virtualized wireless networks. We analyze the interplay between spectrum and antennas in the context of an auction-based allocation mechanism through which VNOs can bid for a combination of the two types of resources. Our analysis shows that the complementarity and partial substitutability of the two resources significantly impact the results of the allocation of those resources and uncovers the possibility of divergent interests between the spectrum and the infrastructure providers

    Mandate-driven networking eco-system : a paradigm shift in end-to-end communications

    Get PDF
    The wireless industry is driven by key stakeholders that follow a holistic approach of "one-system-fits-all" that leads to moving network functionality of meeting stringent End-to-End (E2E) communication requirements towards the core and cloud infrastructures. This trend is limiting smaller and new players for bringing in new and novel solutions. For meeting these E2E requirements, tenants and end-users need to be active players for bringing their needs and innovations. Driving E2E communication not only in terms of quality of service (QoS) but also overall carbon footprint and spectrum efficiency from one specific community may lead to undesirable simplifications and a higher level of abstraction of other network segments may lead to sub-optimal operations. Based on this, the paper presents a paradigm shift that will enlarge the role of wireless innovation at academia, Small and Medium-sized Enterprises (SME)'s, industries and start-ups while taking into account decentralized mandate-driven intelligence in E2E communications

    A unified radio control architecture for prototyping adaptive wireless protocols

    Get PDF
    Experimental optimization of wireless protocols and validation of novel solutions is often problematic, due to limited configuration space present in commercial wireless interfaces as well as complexity of monolithic driver implementation on SDR-based experimentation platforms. To overcome these limitations a novel software architecture is proposed, called WiSHFUL, devised to allow: i) maximal exploitation of radio functionalities available in current radio chips, and ii) clean separation between the logic for optimizing the radio protocols (i.e. radio control) and the definition of these protocols

    Optical constants of magnetron-sputtered magnesium films in the 25-1300 eV energy range

    Get PDF
    The transmittance of dc magnetron-sputtered Mg thin films was measured in the 25-1300 eV spectral range. Freestanding Mg films protected with Al layers were characterized ex situ. Transmittance measurements were used to obtain the extinction coefficient k of Mg films. The obtained k values along with the data available in the literature, and with interpolations and extrapolations for the rest of the spectrum, were used to obtain the real part of the index of refraction n by the Kramers-Krönig analysis. Sum-rule tests indicated a good consistency of the data. © 2010 American Institute of Physics.Peer Reviewe

    In Vivo Imaging of Vesicular Monoamine Transporters in Human Brain Using [ 11 C]Tetrabenazine and Positron Emission Tomography

    Full text link
    The pharmacokinetics of [ 11 CJtetrabenazine, a high-affinity radioligand for the monoamine vesicular transporter, were determined in living human brain using in vivo imaging by positron emission tomography (PET). The radiotracer showed high brain uptake and rapid washout from all brain regions with relatively slower clearance from regions of highest concentrations of monoamine vesicular transporters (striatum), resulting in clear differential visualization of these structures at short intervals after injection (10–20 min). As the first human PET imaging study of a vesicular neurotransmitter transporter, these experiments demonstrate that external imaging of vesicular transporters forms a new and valuable approach to the in vivo quantification of monoaminergic neurons, with potential application to the in vivo study of neurodegenerative disorders such as Parkinson's disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65743/1/j.1471-4159.1993.tb03521.x.pd

    Chronic AMPK activity dysregulation produces myocardial insulin resistance in the human Arg302Gln-PRKAG2 glycogen storage disease mouse model

    Get PDF
    BACKGROUND: The cardiac PRKAG2 mutation in the γ2-subunit of adenosine monophosphate activated kinase (AMPK) is characterized by excessive glycogen deposition, hypertrophy, frequent arrhythmias, and progressive conduction system disease. We investigated whether myocardial glucose uptake (MGU) was augmented following insulin stimulation in a mouse model of the PRKAG2 cardiac syndrome. METHODS: Myocardial and skeletal muscle glucose uptake was assessed with 2-[(18)F]fluoro-2-deoxyglucose positron emission tomography imaging in n = 3 transgenic wildtype (TGwt) vs n = 7 PRKAG2 mutant (TGmut) mice at baseline and 1 week later, 30 min following acute insulin. Systolic function, cardiac glycogen stores, phospho-AMPK α, and insulin-receptor expression levels were analyzed to corroborate to the in vivo findings. RESULTS: TGmut Patlak Ki was reduced 56% at baseline compared to TGwt (0.3 ± 0.2 vs 0.7 ± 0.1, t test p = 0.01). MGU was augmented 71% in TGwt mice following acute insulin from baseline (0.7 ± 0.1 to 1.2 ± 0.2, t test p < 0.05). No change was observed in TGmut mice. As expected for this cardiac specific transgene, skeletal muscle was unaffected at baseline with a 33% to 38% increase (standard uptake values) for both genotypes following insulin stimulation. TGmut mice had a 47% reduction in systolic function with a fourfold increase in cardiac glycogen stores correlated with a 29% reduction in phospho-AMPK α levels. There was no difference in cardiac insulin receptor expression between mouse genotypes. CONCLUSIONS: These results demonstrate a correlation between insulin resistance and AMPK activity and provide the basis for the use of this animal model for assessing metabolic therapy in the treatment of affected PRKAG2 patients
    • …
    corecore